

Seminar on New Opportunities for Testing and Certification in the Age of Technology

Quantum Measurement Standards: New Trends in Electrical Metrology

Steven Yang The Standards and Calibration Laboratory 18 March 2019

Contents

- Introduction
- History of Electrical Metrology
- Recent Developments in Electrical Quantum Measurement Standards
- New Applications in Electrical Metrology
- Future Developments

What is Metrology?

- Metrology is the "science and practice of measurement"
 - <u>Stable</u>: Long-term trends can be used for decision making
 - <u>Comparable</u>: Results from different laboratories can be brought together
 - <u>Coherent</u>: Results from different methods can be brought together
- The objectives of metrology are achieved through providing the framework for <u>traceable</u> <u>measurements</u>.

What is traceability?

Introduction of SCL

Established in 1984

 SCL is the Hong Kong's custodian of reference standards for physical measurement

- From 1860:
- Siemens mercury unit
 - Electricity passing through a 1-meter long column of pure mercury
- Silver voltameter
 - "International ampere"
 - Determine the mass of the cathode before and after to indicate current had passed through it

- Weston Cells
 - H-saped glass container filled with chemical for stable voltage

- Ampere balance
 - Current pass through a coil will produce a physical motion to move the indicator

- In 1920s:
 - International comparison of Weston cells
- In 1933:
 - CGPM determined to move from "international ampere" to "absolute system" based on length, weight and time.
- In 1948:
 - Officially adopted by CIPM

Current SI Definition (1948)

- In 1960:
 - The "ampere" joined the family of SI base unit.

- In 1970-80:
 - Evolution of quantum technologies

Current Practical Realization

$$V = \frac{nf}{K_{J-90}} \approx nf \frac{h}{2e}$$

1 -

. **...**

$$R_H = \frac{R_{K-90}}{i} \approx \frac{h}{ie^2}$$

Josephson Effect

- Nobel Prize in Physics in 1973
- Prof. Brian Josephson
- Josephson Array Junction
 - Superconductor
 - Tunneling effect
- At 4.2 K (liquid helium)
 - Cooper pair of electron can tunnel through the insulation barrier giving rise to a DC current
 - No voltage drop across the tunnel barrier

Josephson Voltage

$$V = nf\frac{h}{2e} = \frac{nf}{K_j}$$

- $h \approx 6.626 \mathrm{x} 10^{-34} \mathrm{Js}$
- $e \approx 1.602 \mathrm{x} 10^{-19} \mathrm{C}$
- where K_J : Josephson constant = 2e/h ≈ 483597 GHz/V
- $K_{J-90} = 483597.9$ GHz/V

Quantum Hall Effect

- Nobel Prize in Physics in 1985
- Prof. Klaus von Klitzing
- Two-dimensional (2D) electrons in strong magnetic field at low temperature shows quantized Hall resistance with the universal fundamental constant.

Prof. Dr. Klaus von Klitzing visited SCL on 29 July 2016

Quantum Hall Resistance

$$R_H = \frac{h}{ie^2}$$

- $h \approx 6.626 \mathrm{x} 10^{-34} \mathrm{Js}$
- $e \approx 1.602 \mathrm{x} 10^{-19} \mathrm{C}$
- For i=1, $R_{\rm k} \approx 25812 \ \Omega$
- CIPM conventional defined value $R_{k-90} = 25812.807 \Omega$
- $R_{\rm H} = R_{\rm k-90}/i$

The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge *e* to be 1.602 176 634 $\times 10^{-19}$ when expressed in the unit C, which is equal to A s, where the second is defined in terms of Δv_{Cs} .

To be implemented on 20 May 2019

Revised definition of electric current

Revised definition of electric current

(Sources: NIST, PTB, NPL)

Continuity of Electrical Standards

Defining constants:

 $e = 1.602\,176\,634 \cdot 10^{-19}\,\mathrm{C}$ $h = 6.626\,070\,15 \cdot 10^{-34}\,\mathrm{J\,s}$

$$K_{\rm J}/K_{\rm J-90} - 1 = -1.1 \cdot 10^{-7}$$

$$R_{\rm K}/R_{\rm K-90} - 1 = 1.8 \cdot 10^{-8}$$

Implementation

Criteria	CCEM 17-09 recommended actions	
$2.5 d \leq U$	no action is necessary until the next recalibration (or measurement).	
U < 2.5 d	numerical correct or recalibrate before the standard's next use for traceability.	

Instruments	U (x 10 ⁻⁶)	d (x 10 ⁻⁶)	U < 2.5 d
Zener voltage standards	0.06		Yes
Calibrators (DC voltage)	0.7	+0.11	No
DMM (DC voltage)	1.5		No
Standard resistors	0.3	+0.018	No
Calibrators (Resistance)	1.0		No
DMM (Resistance)	1.0		No
Calibrators (DC current)			No
DMM (DC current)	1.0	+0.087	No

DC Voltage Metrology

Voltage	Mean Difference	U
10 V	0.22 nV	2.2 nV
1.018 V	-0.51 nV	1.8 nV

(Source: NIST)

AC Voltage Synthesis

Programmable Josephson Voltage Standard (PJVS)

- step-wise approximated sine waves

Josephson Arbitrary Waveform Synthesizer (JAWS)

- direct digital synthesis with current pulse sequences

AC Voltage Metrology

Thermal Converter

Multijunction Thermal Converter

⊭—1 cm→

Few ppm

K → 2 mm → Sub ppm

(Sources: NIST, PTB)

Medical Application

• Synthesis of Normal sinus ECG waveform by JAWS

Medical Application

Electrical Testing

- RCD tester
- Insulation resistance
- Clamp meter
- Withstanding voltage
- Electrical safety analyzer

Advanced Sensors

(Sources: Electronicshub.org, logisticsarena.eu)

Future development

- Lower magnetic field for QHR
- Higher operating temperature for quantum standards
- Quantum calibrators (DC/AC)
- SET
- Ultra Low Current Amplifier (ULCA)

Conclusions

- The development of quantum measurement standards have evolved rapidly in recent years.
- These measurement standards ensured the accuracy of electrical calibration for new opportunities in the technology age.

Thank you!

